Shuffling matrices, Kronecker product and Discrete Fourier Transform

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cayley Transform and the Kronecker Product of Hermitian Matrices

We consider the conditions under which the Cayley transform of the Kronecker product of two Hermitian matrices can be again presented as a Kronecker product of two matrices and, if so, if it is a product of the Cayley transforms of the two Hermitian matrices. 2010 Math. Subj. Class.: 15A69, 15B57.

متن کامل

The discrete Fourier transform and the particle mixing matrices

In quantum mechanics, the Fourier Transform commonly converts from position space to momentum. For finite dimensional Hilbert spaces, the analog is the discrete (or quantum) Fourier transform, which has many applications in quantum information theory. We explore applications of this discrete Fourier transform to the elementary particle generations, and then present a related and elegant new par...

متن کامل

Finite Fourier Transform, Circulant Matrices, and the Fast Fourier Transform

Suppose we have a function s(t) that measures the sound level at time t of an analog audio signal. We assume that s(t) is piecewise-continuous and of finite duration: s(t) = 0 when t is outside some interval a ≤ t ≤ b. Make a change of variable x = (t− a)/(b− a) and set f(x) = s(t). Then 0 ≤ x ≤ 1 when a ≤ t ≤ b, and f(x) is a piecewise continuous function of x. We convert f(x) into a digital s...

متن کامل

Dft : Discrete Fourier Transform

A. Table of contents by sections: 1. Abstract (you’re reading this now) 2. Summary of the DFT (How do I do the homework?) 3. Review of continuous-time Fourier series 4. Bandlimited signals and finite Fourier series 5. Sampling theorem for periodic signals 6. Review of quirks of discrete-time frequency 7. Orthogonality and its significance 8. Discrete Fourier Transform (DFT) 9. Use of DFT to com...

متن کامل

The Discrete Fourier Transform∗

1 Motivation We want to numerically approximate coefficients in a Fourier series. The first step is to see how the trapezoidal rule applies when numerically computing the integral (2π) −1 2π 0 F (t)dt, where F (t) is a continuous, 2π-periodic function. Applying the trapezoidal rule with the stepsize taken to be h = 2π/n for some integer n ≥ 1 results in (2π) −1 2π 0 F (t)dt ≈ 1 n n−1 j=0 Y j , ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 2017

ISSN: 0166-218X

DOI: 10.1016/j.dam.2017.08.018